The quality of knowledge retrieval is crucial in knowledge-intensive conversations. Two common strategies to improve the retrieval quality are finetuning the retriever or generating a self-contained query, while they encounter heavy burdens on expensive computation and elaborate annotations. In this paper, we propose an unsupervised query enhanced approach for knowledge-intensive conversations, namely QKConv. There are three modules in QKConv: a query generator, an off-the-shelf knowledge selector, and a response generator. Without extra supervision, the end-to-end joint training of QKConv explores multiple candidate queries and utilizes corresponding selected knowledge to yield the target response. To evaluate the effectiveness of the proposed method, we conducted comprehensive experiments on conversational question-answering, task-oriented dialogue, and knowledge-grounded conversation. Experimental results demonstrate that QKConv achieves state-of-the-art performance compared to unsupervised methods and competitive performance compared to supervised methods.
translated by 谷歌翻译
Determining causal effects of temporal multi-intervention assists decision-making. Restricted by time-varying bias, selection bias, and interactions of multiple interventions, the disentanglement and estimation of multiple treatment effects from individual temporal data is still rare. To tackle these challenges, we propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt). TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions which further improves estimation accuracy. Through implementing experiments on two real-world datasets from distinct fields, the proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
We present Masked Audio-Video Learners (MAViL) to train audio-visual representations. Our approach learns with three complementary forms of self-supervision: (1) reconstruction of masked audio and video input data, (2) intra- and inter-modal contrastive learning with masking, and (3) self-training by reconstructing joint audio-video contextualized features learned from the first two objectives. Pre-training with MAViL not only enables the model to perform well in audio-visual classification and retrieval tasks but also improves representations of each modality in isolation, without using information from the other modality for fine-tuning or inference. Empirically, MAViL sets a new state-of-the-art on AudioSet (53.1 mAP) and VGGSound (67.1% accuracy). For the first time, a self-supervised audio-visual model outperforms ones that use external supervision on these benchmarks. Code will be available soon.
translated by 谷歌翻译
Channel and spatial attention mechanism has proven to provide an evident performance boost of deep convolution neural networks (CNNs). Most existing methods focus on one or run them parallel (series), neglecting the collaboration between the two attentions. In order to better establish the feature interaction between the two types of attention, we propose a plug-and-play attention module, which we term "CAT"-activating the Collaboration between spatial and channel Attentions based on learned Traits. Specifically, we represent traits as trainable coefficients (i.e., colla-factors) to adaptively combine contributions of different attention modules to fit different image hierarchies and tasks better. Moreover, we propose the global entropy pooling (GEP) apart from global average pooling (GAP) and global maximum pooling (GMP) operators, an effective component in suppressing noise signals by measuring the information disorder of feature maps. We introduce a three-way pooling operation into attention modules and apply the adaptive mechanism to fuse their outcomes. Extensive experiments on MS COCO, Pascal-VOC, Cifar-100, and ImageNet show that our CAT outperforms existing state-of-the-art attention mechanisms in object detection, instance segmentation, and image classification. The model and code will be released soon.
translated by 谷歌翻译
Establishing open and general benchmarks has been a critical driving force behind the success of modern machine learning techniques. As machine learning is being applied to broader domains and tasks, there is a need to establish richer and more diverse benchmarks to better reflect the reality of the application scenarios. Graph learning is an emerging field of machine learning that urgently needs more and better benchmarks. To accommodate the need, we introduce Graph Learning Indexer (GLI), a benchmark curation platform for graph learning. In comparison to existing graph learning benchmark libraries, GLI highlights two novel design objectives. First, GLI is designed to incentivize \emph{dataset contributors}. In particular, we incorporate various measures to minimize the effort of contributing and maintaining a dataset, increase the usability of the contributed dataset, as well as encourage attributions to different contributors of the dataset. Second, GLI is designed to curate a knowledge base, instead of a plain collection, of benchmark datasets. We use multiple sources of meta information to augment the benchmark datasets with \emph{rich characteristics}, so that they can be easily selected and used in downstream research or development. The source code of GLI is available at \url{https://github.com/Graph-Learning-Benchmarks/gli}.
translated by 谷歌翻译
Federated Learning (FL) is pervasive in privacy-focused IoT environments since it enables avoiding privacy leakage by training models with gradients instead of data. Recent works show the uploaded gradients can be employed to reconstruct data, i.e., gradient leakage attacks, and several defenses are designed to alleviate the risk by tweaking the gradients. However, these defenses exhibit weak resilience against threatening attacks, as the effectiveness builds upon the unrealistic assumptions that deep neural networks are simplified as linear models. In this paper, without such unrealistic assumptions, we present a novel defense, called Refiner, instead of perturbing gradients, which refines ground-truth data to craft robust data that yields sufficient utility but with the least amount of privacy information, and then the gradients of robust data are uploaded. To craft robust data, Refiner promotes the gradients of critical parameters associated with robust data to close ground-truth ones while leaving the gradients of trivial parameters to safeguard privacy. Moreover, to exploit the gradients of trivial parameters, Refiner utilizes a well-designed evaluation network to steer robust data far away from ground-truth data, thereby alleviating privacy leakage risk. Extensive experiments across multiple benchmark datasets demonstrate the superior defense effectiveness of Refiner at defending against state-of-the-art threats.
translated by 谷歌翻译
It is well believed that the higher uncertainty in a word of the caption, the more inter-correlated context information is required to determine it. However, current image captioning methods usually consider the generation of all words in a sentence sequentially and equally. In this paper, we propose an uncertainty-aware image captioning framework, which parallelly and iteratively operates insertion of discontinuous candidate words between existing words from easy to difficult until converged. We hypothesize that high-uncertainty words in a sentence need more prior information to make a correct decision and should be produced at a later stage. The resulting non-autoregressive hierarchy makes the caption generation explainable and intuitive. Specifically, we utilize an image-conditioned bag-of-word model to measure the word uncertainty and apply a dynamic programming algorithm to construct the training pairs. During inference, we devise an uncertainty-adaptive parallel beam search technique that yields an empirically logarithmic time complexity. Extensive experiments on the MS COCO benchmark reveal that our approach outperforms the strong baseline and related methods on both captioning quality as well as decoding speed.
translated by 谷歌翻译
The existence of metallic implants in projection images for cone-beam computed tomography (CBCT) introduces undesired artifacts which degrade the quality of reconstructed images. In order to reduce metal artifacts, projection inpainting is an essential step in many metal artifact reduction algorithms. In this work, a hybrid network combining the shift window (Swin) vision transformer (ViT) and a convolutional neural network is proposed as a baseline network for the inpainting task. To incorporate metal information for the Swin ViT-based encoder, metal-conscious self-embedding and neighborhood-embedding methods are investigated. Both methods have improved the performance of the baseline network. Furthermore, by choosing appropriate window size, the model with neighborhood-embedding could achieve the lowest mean absolute error of 0.079 in metal regions and the highest peak signal-to-noise ratio of 42.346 in CBCT projections. At the end, the efficiency of metal-conscious embedding on both simulated and real cadaver CBCT data has been demonstrated, where the inpainting capability of the baseline network has been enhanced.
translated by 谷歌翻译
Diffusion models, which learn to reverse a signal destruction process to generate new data, typically require the signal at each step to have the same dimension. We argue that, considering the spatial redundancy in image signals, there is no need to maintain a high dimensionality in the evolution process, especially in the early generation phase. To this end, we make a theoretical generalization of the forward diffusion process via signal decomposition. Concretely, we manage to decompose an image into multiple orthogonal components and control the attenuation of each component when perturbing the image. That way, along with the noise strength increasing, we are able to diminish those inconsequential components and thus use a lower-dimensional signal to represent the source, barely losing information. Such a reformulation allows to vary dimensions in both training and inference of diffusion models. Extensive experiments on a range of datasets suggest that our approach substantially reduces the computational cost and achieves on-par or even better synthesis performance compared to baseline methods. We also show that our strategy facilitates high-resolution image synthesis and improves FID of diffusion model trained on FFHQ at $1024\times1024$ resolution from 52.40 to 10.46. Code and models will be made publicly available.
translated by 谷歌翻译